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Abstract. Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in
different orthogonal bases is a constant equal to 1/

√
d, with d the dimension of the finite Hilbert space, are

becoming more and more studied for applications such as quantum tomography and cryptography, and in
relation to entangled states and to the Heisenberg-Weil group of quantum optics. Complete sets of MUBs of
cardinality d+1 have been derived for prime power dimensions d = pm using the tools of abstract algebra.
Presumably, for non prime dimensions the cardinality is much less. Here we reinterpret MUBs as quantum
phase states, i.e. as eigenvectors of Hermitian phase operators generalizing those introduced by Pegg and
Barnett in 1989. We relate MUB states to additive characters of Galois fields (in odd characteristic p)
and to Galois rings (in characteristic 2). Quantum Fourier transforms of the components in vectors of the
bases define a more general class of MUBs with multiplicative characters and additive ones altogether. We
investigate the complementary properties of the above phase operator with respect to the number operator.
We also study the phase probability distribution and variance for general pure quantum electromagnetic
states and find them to be related to the Gauss sums, which are sums over all elements of the field (or of
the ring) of the product of multiplicative and additive characters. Finally, we relate the concepts of mutual
unbiasedness and maximal entanglement. This allows to use well studied algebraic concepts as efficient
tools in the study of entanglement and its information aspects.

PACS. 02.10.De Algebraic structures and number theory – 03.65.Ud Entanglement and quantum nonlo-
cality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.) – 03.65.Fd Algebraic methods

1 Introduction

In quantum mechanics, orthogonal bases of a Hilbert space
Hq of finite dimension q are mutually unbiased if inner
products between all possible pairs of vectors of distinct
bases are all equal to 1/

√
q. Eigenvectors of ordinary Pauli

spin matrices (i.e. in dimension q = 2) provide the best
known example. It has been shown that in dimension q =
pm which is the power of a prime p, the complete sets of
mutually unbiased bases (MUBs) result from Fourier anal-
ysis over a Galois field Fq (in odd characteristic p) [1] or of
Galois ring R4m(in even characteristic 2) [2]. In [3,4], the
reader can find an exhaustive literature on MUBs. Com-
plete sets of MUBs have an intrinsic geometrical interpre-
tation, and were related to discrete phase spaces [3,5,6],
finite projective planes [7,8], convex polytopes [9], and
complex projective 2-designs [10,11]. There are hints on
the relation to symmetric informationally complete pos-
itive operator measures (SIC-POVMs) [12–15], and to
Latin squares [16].

a e-mail: planat@lpmo.edu

There are strong motivations to embark on detailed
studies of MUBs. First, they enter rigorous treatments of
Bohr’s principle of complementarity that distinguishes be-
tween quantum and classical systems at the practical level
of measurements. This fundamental quantum principle in-
troduces the idea of complementary pairs of observables
in the sense that precise measurement of one of them im-
plies that possible outcomes of the other (when measured)
are equally probable. In the nondegenerate case, if an ob-
servable O represented by a q times q Hermitian matrix
is measured in a quantum system prepared in the eigen-
base of its complementary counterpart Oc, then the prob-
ability to find the system in one of the eigenstates of O
is just 1/q as corresponding to mutually unbiased inner
products. Another domain of applications where MUBs
have been found to play an important role is the field of
secure quantum key exchange (quantum cryptography).
In the area of quantum state tomography, one should use
MUBs for a complete reconstruction of an unknown quan-
tum state [17].

In this paper we approach the MUBs theory from the
point of view of the theory of additive and multiplicative
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characters in Galois number field theory. The multiplica-
tive characters ψk(n) = exp(2iπnk/(q − 1)), k = 0...q− 2,
are well known since they constitute the basis for the or-
dinary discrete Fourier transform. But in order to con-
struct MUBs, the additive characters introduced below
are the ones which are useful. This construction is im-
plicit in some previous papers [1,2,4], and is now being
fully recognized [18,19],

An interesting consequence is the following: the dis-
crete Fourier transform in Zq has been used by Pegg
and Burnett [20] as a definition of phase states |θk〉,
k = 0...q − 1, in Hq. The phase states |θk〉 could be con-
sidered as eigenvectors of a properly defined Hermitian
phase operator ΘPB . Phase properties and phase fluctu-
ations attached to particular field states were extensively
described. In particular the classical phase variance π2/3
could be recovered.

We construct here a phase operator ΘGal having phase
MUBs as eigenvectors. In contrast to the case of ΘPB, we
find that the phase fluctuations of ΘGal can be expressed
in terms of Gauss sums over the finite number field Fq,
and could be in principle smaller than those due to ΘPB .
This points to the fact that the phase MUBs may be of
interest for quantum signal processing. Character sums
and Gauss sums which are useful for optimal bases of m-
qudits (p odd) are also generalized to optimal bases of
m-qubits (p = 2).

2 Phase MUBs in odd prime characteristic

2.1 Mathematical preliminaries

The key relation between Galois fields Fq and MUBs is the
theory of characters. This has not been recognized before
and here we use the standpoint of characters as the most
general way of considering previous results and also as a
better criterium for elaborating on future results.

A Galois field is a finite set structure endowed with
two group operations, the addition “+” and the multipli-
cation “·”. The field Fq can be represented as classes of
polynomials obtained by computing modulo an irreducible
polynomial over the ground field Fp = Zp, the integers
modulo p [21]. A Galois field exists if and only if q = pm.
We also recall that Fq[x] is the standard notation for the
set of polynomials in x with coefficients in Fq.

A character κ(g) over an Abelian group G is a (con-
tinuous) map from G to the field of complex numbers C
of unit modulus, i.e. such that |κ(g)| = 1, g ∈ G.

We start with a map from the extended field Fq to the
ground field Fp which is called the trace function

tr(x) = x+ xp + ...+ xpm−1
∈ Fp, ∀ x ∈ Fq. (1)

Using (1), an additive character over Fq is defined as

κ(x) = ωtr(x)
p , ωp = exp

(
2iπ
p

)
, x ∈ Fq . (2)

The main property is that it satisfies κ(x + y) =
κ(x)κ(y), x, y ∈ Fq.

On the other hand, the multiplicative characters are
of the form

ψk(n) = ωnk
q−1, k = 0...q − 2, n = 0...q − 2. (3)

In the present research, the construction of Galois phase
MUBs will be related to character sums with polynomial
arguments f(x) also called Weil sums [2]

Wf =
∑
x∈Fq

κ(f(x)). (4)

In particular, (theorem 5.38 in [21]), for a polynomial
fd(x) ∈ Fq[x] of degree d ≥ 1, with gcd(d, q) = 1, one
gets Wfd

≤ (d− 1)q1/2.
The quantum fluctuations arising from the phase

MUBs will be found to be related to Gauss sums of the
form

G(ψ, κ) =
∑

x∈F∗
q

ψ(x)κ(x) , (5)

where F ∗
q = Fq − {0}. Using the notation ψ0 for a triv-

ial multiplicative character ψ = 1, and κ0 for a trivial
additive character κ = 1 the Gaussian sums (5) satisfy
G(ψ0, κ0) = q − 1; G(ψ0, κ) = −1; G(ψ, κ0) = 0 and
|G(ψ, κ)| = q1/2 for nontrivial characters κ and ψ.

2.2 Galois quantum phase states

We now introduce a class of quantum phase states as a
“Galois” discrete quantum Fourier transform of the Galois
number kets

|θ(y)〉 =
1
√
q

∑
n∈Fq

ψk(n)κ(yn)|n〉, y ∈ Fq (6)

in which the coefficient in the computational base
{|0〉, |1〉, ..., |q− 1〉} represents the product of an arbitrary
multiplicative character ψk(n) by an arbitrary additive
character κ(yn).

It is easy to show that previous basic results in this
area can be obtained as particular cases of (6). Indeed:

• Pegg and Barnett (1989): for κ = κ0 and ψ ≡
ψk(n), one recovers the ordinary quantum Fourier
transform over Zq. It has been shown [20] that the
corresponding states

|θk〉 =
1
√
q

∑
n∈Zq

ψk(n)|n〉, (7)

are eigenstates of the Hermitian phase operator

ΘPB =
∑

k∈Zq

θk|θk〉〈θk|, (8)

with eigenvalues θk = θo+2πk/q, θ0 an arbitrary initial
phase;
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• Wootters and Fields (1989): we recover the re-
sult of Wootters and Fields in a more general form
by employing the Euclidean division theorem (see the-
orem 11.19 in [22]) for the field Fq, which says that
given any two polynomials y and n in Fq, there exists
a uniquely determined pair (a, b) ∈ Fq × Fq, such that
y = an+ b, deg(b) < deg(a). Using the decomposition
of the exponent in (6), we obtain

|θa
b 〉 =

1
√
q

∑
n∈Fq

ψk(n)κ(an2 + bn)|n〉, a, b ∈ Fq. (9)

(The result of Wootters and Fields corresponds to the
trivial multiplicative character ψ0 = 1.) Equation (9)
defines a set of q bases (with index a) of q vectors
(with index b). Using Weil sums (4) it is easily shown
that, for q odd, so that gcd(2, q) = 1, the bases are
orthogonal and mutually unbiased to each other and
to the computational base

|〈θa
b |θc

d〉| =

∣∣∣∣∣∣
1
q

∑
n∈Fq

ωtr((c−a)n2+(d−b)n
p

∣∣∣∣∣∣
=

{
δbd if c = a (orthogonality)
1/

√
q if c 	= a (unbiasedness).

(10)

3 Quantum fluctuations of phase MUBs
in odd prime characteristic

Following Pegg and Barnett, a good procedure to examine
the phase properties of a quantized electromagnetic field
state is by introducing a phase operator and this was one
of the reasons that led them to introduce their famous
Hermitian phase operator ΘPB . In Section 6 of their sem-
inal paper they showed “for future reference” how their
phase operator could be employed to achieve this goal.
In this section we proceed along the same lines using the
phase form of the Wootters-Field MUBs.

3.1 The Galois phase operator

On the other hand, the phase MUBs as given in (9) are
eigenstates of a “Galois” quantum phase operator

ΘGal =
∑
b∈Fq

θb|θa
b 〉〈θa

b |, a, b ∈ Fq. (11)

with eigenvalues θb = 2πb/q. We use this fact to perform
several calculations of quantum phase expectation values
and phase variances for these MUBs.

Using (9) in (11) and the properties of the field theo-
retical trace the Galois quantum phase operator reads

ΘGal =
2π
q2

∑
m,n∈Fq

ψk(n−m)ωtr[a(n2−m2)]
p S(n,m)|n〉〈m|,

with S(n,m) =
∑
b∈Fq

bωtr[b(n−m)]
p . (12)

In the diagonal matrix elements, we have the partial sums

S(n, n) =
q(q − 1)

2
, (13)

so that 〈n|ΘGal|n〉 = π(q − 1)/q. In the non-diagonal ma-
trix elements, the partial sums can be calculated from

∑
b∈Fq

bxb = x(1 + 2x+ 3x2 + ...+ qxq−1)

= x

[
1 − xq

(1 − x)2
− qxq

1 − x

]
=

xq

x− 1
, (14)

where we introduced x = ω
tr(n−m)
p and we made use of

the relation xq = 1. Finally, we get

S(m,n) =
q

1 − ω
tr(m−n)
p

. (15)

3.2 The Galois phase-number commutator

Using (12) and the Galois number operator

N =
∑
l∈Fq

l|l〉〈l|, (16)

the matrix elements of the phase-number commutator
[ΘGal, N ] are calculated as

uGal(n,m) =
2π
q2

(n−m)ψk(n−m)ωtr[a(n2−m2)]
p S(n,m). (17)

The diagonal elements vanish, the corresponding matrix is
anti-Hermitian since uGal(n,m) = −u†Gal(m,n), and the
states are pseudo-classical since limq→∞ uGal(n,m) = 0.
These properties are similar to those of the Pegg and
Barnett commutator.

3.3 Galois phase properties of a pure quantum
electromagnetic state

For the evaluation of the phase properties of a general
pure state of an electromagnetic field mode in the Galois
number field we proceed similarly to Pegg and Barnett.
Thus, we consider the pure state of the form

|f〉 =
∑

n∈Fq

un|n〉, with un =
1
√
q

exp(inβ), (18)

where β is a real parameter, and we sketch the com-
putation of the phase probability distribution |〈θb|f〉|2,
the phase expectation value 〈ΘGal〉 =

∑
b∈Fq

θb|〈θb|f〉|2
and the phase variance 〈∆Θ2

Gal〉 =
∑

b∈Fq
(θb −

〈ΘGal〉)2|〈θb|f〉|2, respectively (the upper index a for the
base is implicit and we discard it for simplicity).
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The two factors in the expression for the probability
distribution

1
q2


 ∑

n∈Fq

ψk(−n) exp(inβ)κ(−an2 − bn)




×


 ∑

m∈Fq

ψk(m) exp(−imβ)κ(am2 + bm)


 , (19)

have absolute values bounded by the absolute value of
generalized Gauss sumsG(ψ, κ) =

∑
x∈Fq

ψ(g(x))κ(f(x)),
with f, g ∈ Fq[x]. Weil [23] showed that for f(x) of degree
d with gcd(d, q) = 1 as in (4), under the constraint that
for the multiplicative character ψ of order s, the polyno-
mial g(x) should not be a sth power in Fq[x] and with
ν distinct roots in the algebraic closure of Fq, the order
of magnitude of the sums is (d + ν − 1)

√
q. For a trivial

multiplicative character ψ0, and β = 0, the overall bound
is |〈θb|f〉|2 ≤ 1/q and it follows that the absolute value of
the Galois phase expectation value is bounded from above
as expected for a common phase operator

|〈ΘGal〉| ≤
2π
q2

∑
b∈Fq

b ≤ π. (20)

The exact formula for the phase expectation value reads

〈ΘGal〉 =
2π
q3

∑
m,n∈Fq

eβ(m,n)S(m,n), (21)

where eβ(m,n) = ψk(m−n) exp[i(n−m)β]χ[a(m2 − n2)]
and the sums S(m,n) were defined in (13) and (15). The
set of all the q diagonal terms m = n in 〈ΘGal〉 contributes
an order of magnitude (2π/q3)qS(n, n) 
 π. The contri-
bution from off-diagonal terms in (21) are not easy to
evaluate analytically; we were able to show that for them
one has |S(m,n)| = (q/2)| sin[(π/p)tr(n−m)]|−1.

The phase variance can be written as

〈∆Θ2
Gal〉 =

∑
b∈Fq

(θ2b − 2θb〈ΘGal〉)|〈θb|f〉|2. (22)

The term 〈ΘGal〉2
∑

b∈Fq
|〈θb|f〉|2 does not con-

tribute since it is proportional to the Weil sum∑
b∈Fq

ω
tr(b(n−m)
p = 0. As a result a cancella-

tion of the quantum phase fluctuations may oc-
cur in (22) from the two extra terms of opposite
sign. But the calculation are again not easy to
perform analytically. For the first term one gets
2(2π/q2)2

∑
m,n∈Fq

eβ(m,n)|S(m,n)|2. The second term
in (22) is −2

∑
b∈Fq

θb〈ΘGal〉|〈θb|f〉|2 = −2〈ΘGal〉2.
Partial cancellation occurs in the diagonal terms of (22)
leading to the contribution ≈−2π2/3 which is still twice
(in absolute value) the amount of phase fluctuations in
the classical regime. A closed form for the estimate of the
non-diagonal terms is still an open problem.

4 Phase MUBs for m-qubits

4.1 Mathematical preliminaries

The Weil sums (4) which have been proved useful in the
construction of MUBs in odd characteristic p (and odd
dimension q = pm), are not useful in characteristic p = 2,
since in this case the degree 2 of the polynomial fd(x) is
such that gcd(2, q) = 2.

An elegant method for constructing complete sets
of MUBs of m-qubits was found by Klappenecker and
Rötteler [2]. It makes use of objects belonging to the con-
text of quaternary codes [24], the so-called Galois rings
R4m ; we refer the interested reader to their paper for more
mathematical details. We present a brief sketch in the fol-
lowing.

Any element y ∈ R4m can be uniquely determined in
the form y = a + 2b, where a and b belong to the so-
called Teichmüller set Tm = (0, 1, ξ, ..., ξ2

m−2), where ξ is
a nonzero element of the ring which is a root of the so-
called basic primitive polynomial h(x) [2]. Moreover, one
finds that a = y2m

. We can also define the trace to the
base ring Z4 by the map

t̃r(y) =
m−1∑
k=0

σk(y), (23)

where the summation runs over R4m and the Frobenius
automorphism σ reads

σ(a + 2b) = a2 + 2b2. (24)

In the Galois ring of characteristic 4 the additive charac-
ters are

κ̃(x) = ω
t̃r(x)
4 = it̃r(x). (25)

The Weil sums (4) are replaced by the exponential sums [2]

Γ (y) =
∑

u∈Tm

κ̃(yu), y ∈ R4m (26)

which satisfy

|Γ (y)| =




0 if y ∈ 2Tm, y 	= 0
2m if y = 0√

2m otherwise.
(27)

Gauss sums for Galois rings were constructed [26]

Gy(ψ̃, κ̃) =
∑

x∈R4m

ψ̃(x)κ̃(yx), y ∈ R4m , (28)

where the multiplicative character ψ̄(x) can be made ex-
plicit [26].

Using the notation ψ̄0 for a trivial multiplicative char-
acter and κ̃0 for a trivial additive character, the Gaussian
sums (28) satisfy Gy(ψ̃0, κ̃0) = 4m; Gy(ψ̃, κ̃0) = 0 and
|Gy(ψ̃, κ̃)| ≤ 2m.
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(|0〉, |1〉, |2〉, |3〉);
1
2 [|0〉 + |1〉 + |2〉 + |3〉, |0〉 + |1〉 − |2〉 − |3〉, |0〉 − |1〉 − |2〉 + |3〉, |0〉 − |1〉 + |2〉 − |3〉]

1
2 [|0〉 − |1〉 − i|2〉 − i|3〉, |0〉 − |1〉 + i|2〉 + i|3〉, |0〉 + |1〉 + i|2〉 − i|3〉, |0〉+ |1〉 − i|2〉 + i|3〉]
1
2 [|0〉 − i|1〉 − i|2〉 − |3〉, |0〉 − i|1〉 + i|2〉 + |3〉, |0〉 + i|1〉 + i|2〉 − |3〉, |0〉 + i|1〉 − i|2〉 + |3〉]
1
2 [|0〉 − i|1〉 − |2〉 − i|3〉, |0〉 − i|1〉 + |2〉 + i|3〉, |0〉 + i|1〉 + |2〉 − i|3〉, |0〉 + i|1〉 − |2〉 + i|3〉], (31)

(|0〉, |1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉);
1
4 [|0〉 + |1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉, |0〉 + |1〉 − |2〉 + |3〉 − |4〉 − |5〉 − |6〉 + |7〉,
|0〉 − |1〉 + |2〉 − |3〉 − |4〉 − |5〉 + |6〉 − |7〉, |0〉 + |1〉 − |2〉 − |3〉 − |4〉 + |5〉 + |6〉 − |7〉,
|0〉 − |1〉 − |2〉 − |3〉 + |4〉 + |5〉 − |6〉 + |7〉, |0〉 − |1〉 − |2〉 + |3〉 + |4〉 − |5〉 + |6〉 − |7〉,
|0〉 − |1〉 + |2〉 + |3〉 − |4〉 + |5〉 − |6〉 − |7〉, |0〉 + |1〉 + |2〉 − |3〉 + |4〉 − |5〉 − |6〉 − |7〉],

... (32)

4.2 Phase states for m-qubits

The quantum phase states for m-qubits can be found as
the “Galois ring” Fourier transform

|θ(y)〉 =
1√
2m

∑
n∈Tm

ψ̃k(n)κ̃(yn)|n〉, y ∈ R4m . (29)

Using the Teichmüller decomposition in the character
function κ̃ one obtains

|θa
b 〉 =

1√
2m

∑
n∈Tm

ψ̃k(n)κ̃[(a+ 2b)n]|n〉, a, b ∈ Tm. (30)

This defines a set of 2m bases (with index a) of 2m vectors
(with index b). Using the exponential sums (26), it is easy
to show that the bases are orthogonal and mutually un-
biased to each other and to the computational base. The
case ψ̄ ≡ ψ̄0 was obtained before [2].

4.3 Phase MUBs for m-qubits: m = 1, 2 and 3

For the special case of qubits, one uses t̃r(x) = x in (30)
so that the three pairs of MUBs are given as

[|0〉, |1〉]; 1√
2
[|0〉+ |1〉, |0〉− |1〉]; 1√

2
[|0〉+ i|1〉, |0〉− i|1〉].

For 2-qubits one gets a complete set of 5 bases as follows

see system (31) above

and for 3-qubits a complete set of 9 bases

see system (32) above

where only the first two bases have been written down for
brevity reasons.

Quantum phase states of m-qubits (30) are eigenstates
of a “Galois ring” quantum phase operator as in (11), and

calculations of the same type as to those performed in
Section 3 can be done, since the t̃r operator (23) fulfills
rules similar to the tr operator (1). By analogy to the
case of qudits in dimension pm, p an odd prime, phase
properties for sets of m-qubits heavily rely on the Gauss
sums (28). The calculations are tedious once again but can
in principle be achieved in specific cases.

5 Mutual unbiasedness and maximal
entanglement

Roughly speaking, entangled states in Hq cannot be fac-
tored into tensorial products of states in Hilbert spaces of
lower dimension. We show now that there is an intrinsic
relation between MUBs and maximal entanglement (see
below).

We start with the familiar Bell states

(|B0,0〉, |B0,1〉) =
1√
2
(|00〉 + |11〉, |00〉 − |11〉),

(|B1,0〉, |B1,1〉) =
1√
2
(|01〉 + |10〉, |01〉 − |10〉),

where the compact notation |00〉 = |0〉 � |0〉, |01〉 = |0〉 �
|1〉, ..., is employed for the tensorial products.

These states are both orthonormal and maximally en-
tangled, i.e., such that trace2|Bh,k〉〈Bh,k| = I2/2, where
trace2 means the partial trace over the second qubit [27].

One can define more general Bell states using the mul-
tiplicative Fourier transform (7) applied to the tensorial
products of two qudits [18,29],

|Bh,k〉 =
1
√
q

q−1∑
n=0

ωkn
q |n, n+ h〉, (33)

These states are both orthonormal, 〈Bh,k|Bh′,k′〉 =
δhh′δkk′ , and maximally entangled, trace2|Bh,k〉〈Bh,k| =
Iq/q.
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{(|00〉 + |11〉+ |22〉 + |33〉 |00〉+ |11〉 − |22〉 − |33〉 |00〉 − |11〉 − |22〉 + |33〉 |00〉 − |11〉 + |22〉 − |33〉);
(|00〉 − |11〉 − i|22〉 − i|33〉 |00〉 − |11〉 + i|22〉 + i|33〉 |00〉+ |11〉 + i|22〉 − i|33〉 |00〉 + |11〉 − i|22〉 + i|33〉); ...}

{(|01〉 + |12〉+ |23〉 + |30〉 |01〉+ |12〉 − |23〉 − |30〉 |01〉 − |12〉 − |23〉 + |30〉 |01〉 − |12〉 + |23〉 − |30〉);
(|01〉 − |12〉 − i|23〉 − i|30〉 |01〉 − |12〉 + i|23〉 + i|30〉 |01〉+ |12〉 + i|23〉 − i|30〉 |01〉 + |12〉 − i|23〉 + i|30〉); ...}

{(|02〉 + |13〉 + |20〉+ |31〉 |02〉 + |13〉 − |20〉 − |31〉 |02〉 − |13〉 − |20〉 + |31〉 |02〉 − |13〉+ |20〉 − |31〉); ...}

{(|03〉+ |10〉 + |21〉 + |32〉 |03〉+ |10〉 − |21〉 − |32〉 |03〉 − |10〉 − |21〉 + |32〉 |03〉 − |10〉 + |21〉 − |32〉); ...}, (37)

We define here an even more general class of maximally
entangled states using the Fourier transform (9) over Fq

as follows

|Ba
h,b〉 =

1
√
q

q−1∑
n=0

ωtr[(an+b)n]
p |n, n+ h〉 . (34)

The h we use here has nothing to do with the polynomial
h(x) of Section 2. A list of the generalized Bell states of
qutrits for the base a = 0 can be found in [28] which is a
work that relies on a coherent state formulation of entan-
glement. In general, for q a power of a prime, starting from
(34) one obtains q2 bases of q maximally entangled states.
Each set of the q bases (with h fixed) has the property of
mutual unbiasedness.

Similarly, for sets of maximally entangled m-qubits one
uses the Fourier transform over Galois rings (30) so that

|Ba
h,b〉 =

1√
2m

2m−1∑
n=0

itr[(a+2b)n]|n, n+ h〉. (35)

For qubits (m = 1) one gets the following bases of maxi-
mally entangled states (in matrix form, up to the propor-
tionality factor)
[

(|00〉 + |11〉, |00〉 − |11〉) (|01〉 + |10〉, |01〉 − |10〉)
(|00〉 + i|11〉, |00〉 − i|11〉) (|01〉 + i|10〉, |01〉)− i|10〉)

]
.

(36)
Two bases in one column are mutually unbiased, while
vectors in two bases on the same line are orthogonal to
each other.

For two-particle sets of quartits, using equations (31)
and (35), one gets 4 sets of (|Ba

h,b〉, h = 0, ..., 3), see them
below, each entailing 4 MUBs (a = 0, ..., 3):

see system (37) above

where, for the sake of brevity, we omitted the normaliza-
tion factor (1/2). Within each set, the four bases are mu-
tually unbiased, as in (31), while the vectors of the bases
from different sets are orthogonal.

As a conclusion, the two related concepts of mutual
unbiasedness and maximal entanglement derive from the

study of lifts of the base field Zp to Galois fields of prime
characteristic p > 2 (in odd dimension), or of lifts of the
base ring Z4 to Galois rings of characteristic 4 (in even
dimension). One wonders if lifts to more general algebraic
structures would play a role in the study of non maximal
entanglement. We have first in mind the near-fields that
are used for deriving efficient classical codes and which
have a strong underlying geometry [30].

6 Conclusion

In this research, we approached the MUBs fundamental
topic from the point of view of the additive and multi-
plicative characters over finite fields in number theory. We
consider that this framework is the most general includ-
ing previous results in the literature as particular cases.
Since MUBs are essentially generalized discrete Fourier
transforms over finite number field kets, we formulated a
quantum phase interpretation and illustrated several cal-
culations of the phase properties of pure quantum states of
the electromagnetic field in this finite number field mathe-
matical context. Various types of Gauss sums get involved
in this type of calculations of the MUBs phase properties
of a pure quantum state and the generalization to the
mixed states, although straightforward through the usage
of the density matrix formalism, could lead to even more
complicated calculations involving such sums. We hope to
evaluate them in future works. We also mentioned in the
last section a possible application to phase MUBs states of
Bell type. This could lead to finite number field measures
of the degree of entanglement.

The authors acknowledge Igor Shparlinski for an important
correction suggested at the last stage of the paper.
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